Carocci editore - Lineamenti di matematica per l'economia

Password dimenticata?

Registrazione

TFA e formazione

Banner

crediti formativi

Banner

Promo del mese

Banner
Banner
Lineamenti di matematica per l'economia

Valerio Grisoli

Lineamenti di matematica per l'economia

Edizione: 1989

Collana: Studi Superiori

ISBN: 9788843007790

  • Pagine: 200
  • Prezzo:25,80 21,93
  • Acquista

In breve

Questo libro si propone di fornire la maggior parte degli elementi di matematica che sono necessari per seguire senza particolari difficoltà un intero primo corso di economia. Gli argomenti trattati sono di tre tipi. Anzitutto (cap. 1) si presentano alcune nozioni di base sui modelli economici e sulle relazioni funzionali tra grandezze economiche. Segue (capp. 2-13) un'introduzione al calcolo infinitesimale. Infine (capp. 14-17) è introdotto il modello delle interdipendenze settoriali. Sono anche forniti cenni di algebra lineare. Ogni capitolo è corredato da alcuni esercizi di ricapitolazione.

Indice

Prefazione Parte prima. Introduzione all'analisi 1. Modelli economici 1.1. Introduzione 1.2. Un modello di mercato 1.3. La determinazione del reddito nazionale 1.4. La struttura di un modello economico 1.5. Variabili endogene, variabili esogene e costanti 1.6. Modelli in forma generica e in forma specifica 1.7. Il problema della statica comparata Esercizi 2. Variabili 2.1. Introduzione 2.2. La retta reale R 2.3. Variabili continue: gli intervalli finiti e infiniti 2.4. Variabili discrete 2.5. Dimensionalità: stock e flussi Esercizi 3. Funzioni 3.1. Introduzione 3.2. Funzioni e formule 3.3. Alcune precisazioni 3.4. Schede 3.5. Grafici 3.6. Funzioni definite in intervalli e successioni 3.7. Funzioni monotòne 3.8. Funzioni invertibili 3.9. Il grafico della funzione inversa 3.10. Funzioni di una variabile in forma esplicita e in forma implicita Esercizi 4. Funzioni elementari 4.1. Introduzione 4.2. Linee rette nel piano 4.3. Polinomi 4.4. Funzioni razionali fratte 4.5. Funzioni espresse mediante radicali 4.6. Funzioni trigonometriche elementari 4.7. Inversa delle funzioni circolari Esercizi 5. Limiti 5.1. Introduzione 5.2. Nozione di limite 5.3. Divergenza 5.4. Limiti per x→+ ∞ 5.5. Un approfondimento (facoltativo) Esercizi 6. Funzioni continue 6.1. Introduzione 6.2. Continuità di una funzione in un punto 6.3. Discontinuità 6.4. Funzioni continue e continue a tratti 6.5. Funzioni a scala Esercizi 7. La derivata 7.1. Variazioni relative: un esempio 7.2. Tasso medio di variazione: concetto e notazioni 7.3. Tasso istantaneo di variazione: la derivata di una funzione in un punto 7.4. Due esempi 7.5. L'inclinazione di una curva in un punto 7.6. La derivata come funzione 7.7. Uno sguardo alla notazione 7.8. Quand'è derivabile una funzione' 7.9. La derivata di alcune funzioni elementari 7.10. Regole di derivazione Esercizi 8. Funzioni totali, medie e marginali in economia 8.1. Definizioni 8.2. Propensione media e marginale al consumo 8.3. Il prodotto medio e marginale del lavoro 8.4. Costi medi e marginali di produzione 8.5. Determinazione grafica della funzione media e di quella marginale data una funzione totale y = f(x) Esercizi 9. Tassi di crescita 9.1. Introduzione 9.2. Serie storiche e tassi di crescita 9.3. Tassi medi di crescita in una funzione 9.4. Tassi istantanei di crescita Esercizi 10. Elasticità 10.1. Elasticità in una scheda 10.2. Elasticità in un intervallo 10.3. Elasticità puntuale 10.4. Metodi grafici Esercizi 11. Derivate successive 11.1. Derivata seconda e successive 11.2. Notazione 11.3. La derivata seconda come tasso istantaneo di accelerazione 11.4. Interpretazione geometrica della derivata seconda 11.5. Concavità e convessità Esercizi 12. Massimi e minimi 12.1. I problemi economici di massimizzazione 12.2. Estremi assoluti ed estremi relativi 12.3. Criteri per trovare gli estremi relativi 12.4. Il criterio della derivata seconda 12.5. Un'applicazione economica: il problema dell'impresa concorrenziale Esercizi 13. Derivate parziali e loro applicazioni 13.1. Funzioni di più variabili indipendenti 13.2. Curve di livello 13.3. Derivate parziali 13.4. Derivate parziali e valori estremi 13.5. Cenni sui massimi vincolati 13.6. Un'applicazione delle derivate parziali alla statica comparata: il moltiplicatore del reddito Esercizi Parte seconda. Cenni di algebra lineare 14. Matrici quadrate 14.1. Definizione 14.2. Particolari matrici (nxn) 14.3. Somma di matrici 14.4. Moltiplicazione di uno scalare e di una matrice 14.5. Il prodotto di due matrici (nxn) 14.6. Proprietà del prodotto di due matrici quadrate 14.7. L'inversa di una matrice quadrata 14.8. Il calcolo della matrice inversa Esercizi 15. Vettori e sistemi di equazioni di I grado 15.1. Vettori colonna 15.2. Operazioni con i vettori 15.3. Forme indeterminate 15.4. Matrici e sistemi di equazioni lineari 15.5. Soluzione di un sistema di I grado usando le matrici 15.6. Sistemi di I grado con un'unica soluzione e matrici invertibili Esercizi 16. Le interdipendenze settoriali 16.1. Le interrelazioni fra settori in un'economia moderna 16.2. Input e output di un settore 16.3. Le ipotesi economiche del modello input-output 16.4. Processi produttivi unitari 16.5. La matrice tecnica 16.6. Impieghi del prodotto lordo di ciascun settore 16.7. Produzioni lorde e domande finali 16.8. Determinazione dei livelli produttivi in funzione delle domande finali Esercizi 17. Un'applicazione all'economia italiana 17.1. Una tabella delle transazioni intersettoriali nell'economia italiana 17.2. La matrice tecnica 17.3. Inversione della matrice tecnica (3x3) dell'economia italiana 17.4. Alcune elaborazioni Esercizi Soluzioni degli esercizi Indice analitico